Nanoencapsulation of Licorice Extract as a Skin Anti-Inflammatory

Authors

  • Natalja Osintsev * Fraunhofer Institute for Wood Research Wilhelm-Klauditz Institute WKI, Bienroder Weg 54 E, 38108 Brunswick, Germany.

https://doi.org/10.48314/nna.vi.61

Abstract

Chronic inflammatory diseases such as lupus are commonly managed using nonsteroidal anti-inflammatory drugs (NSAIDs) and corticosteroids; however, these medications often cause multiple adverse effects, including skin dryness, itching, abnormal discoloration, gastrointestinal discomfort, loss of appetite, and blurred vision. In recent years, researchers have sought alternative therapeutic strategies with fewer side effects by combining traditional and modern medicine. Licorice (Glycyrrhiza glabra) extract, owing to its strong anti-inflammatory and anti-pruritic activities as well as its low toxicity, has shown promise as a natural therapeutic agent for managing inflammatory and autoimmune conditions. In the present study, nanotechnology was employed to encapsulate licorice extract in order to improve its stability and therapeutic efficiency. The extract was prepared by maceration and concentrated, followed by niosomal encapsulation using the thin-film hydration method. The morphology and stability of the synthesized noisome were analyzed using Scanning Electron Microscopy (SEM) and a Zeta sizer. The encapsulation efficiency, determined from the supernatant after centrifugation, was found to be 98.64%, indicating high loading capacity. The resulting formulation exhibited satisfactory stability after one month of storage. Overall, the thin-film hydration method proved to be an efficient approach for the encapsulation of herbal extracts, and niosomal carriers, due to their structural similarity to biological membranes, demonstrate great potential for targeted and sustained delivery of licorice extract as a skin anti-inflammatory agent.

Keywords:

Niosomal encapsulation, Licorice extract, Anti-inflammatory, Drug delivery

References

  1. [1] Moghassemi, S., & Hadjizadeh, A. (2014). Nano-niosomes as nanoscale drug delivery systems: An illustrated review. Journal of controlled release, 185, 22–36. https://doi.org/10.1016/j.jconrel.2014.04.015

  2. [2] Marianecci, C., Di Marzio, L., Rinaldi, F., Celia, C., Paolino, D., Alhaique, F., … & Carafa, M. (2014). Niosomes from 80s to present: The state of the art. Advances in colloid and interface science, 205, 187–206. https://doi.org/10.1016/j.cis.2013.11.018

  3. [3] Afrin, S., Jahan, I., Hasan, A., & Deepa, K. N. (2018). Novel approaches of herbal drug delivery. Journal of pharmaceutical research international, 21(5), 1–11. https://doi.org/10.9734/JPRI/2018/39143

  4. [4] Alkilani, A. Z., McCrudden, M. T. C., & Donnelly, R. F. (2015). Transdermal drug delivery: Innovative pharmaceutical developments based on disruption of the barrier properties of the stratum corneum. Pharmaceutics, 7(4), 438–470. https://doi.org/10.3390/pharmaceutics7040438

  5. [5] Pastorino, G., Cornara, L., Soares, S., Rodrigues, F., & Oliveira, M. B. P. P. (2018). Liquorice (Glycyrrhiza glabra): A phytochemical and pharmacological review. Phytotherapy research, 32(12), 2323–2339. https://doi.org/10.1002/ptr.6178

  6. [6] Tapeh, S. M. T., Baei, M. S., & Keshel, S. H. (2021). Synthesis of thermogel modified with biomaterials as carrier for hUSSCs differentiation into cardiac cells: Physicomechanical and biological assessment. Materials science and engineering: c, 119, 111517. https://doi.org/10.1016/j.msec.2020.111517

  7. [7] Askarkiaee, S., & Baei, M. S. (2025). Preparation and swelling behaviour of calcium-alginate and calcium alginate-chitosan hydrogel beads. Biocompounds, 2(1), 10–16. https://doi.org/10.48313/bic.vi.30

  8. [8] Niknejad, K., Sharifzadeh Baei, M., & Motallebi Tala Tapeh, S. (2018). Synthesis of metformin hydrochloride nanoliposomes: Evaluation of physicochemical characteristics and release kinetics. International journal of nano dimension, 9(3), 298–313. https://journals.iau.ir/article_659887_c9737398d6ce3f78d13a1fa5900b2c17.pdf

  9. [9] Hoshani, M., Atabaki, R., Moghaddam, M. S. (2025). The evaluation of antioxidant compounds of some medicinal plants and their effects on controlling gout disease. Biocompounds, 2(1), 1–9. https://doi.org/10.48313/bic.vi.29

  10. [10] Mowad, C. M., Anderson, B., Scheinman, P., Pootongkam, S., Nedorost, S., & Brod, B. (2016). Allergic contact dermatitis: Patient management and education. Journal of the american academy of dermatology, 74(6), 1043–1054. https://doi.org/10.1016/j.jaad.2015.02.1144

  11. [11] Sung, Y. Y., Lee, A. Y., & Kim, H. K. (2016). Forsythia suspensa fruit extracts and the constituent matairesinol confer anti-allergic effects in an allergic dermatitis mouse model. Journal of ethnopharmacology, 187, 49–56. https://doi.org/10.1016/j.jep.2016.04.015

  12. [12] Sung YoonYoung, S. Y., Lee AYeong, L. Ay., & Kim HoKyoung, K. H. (2016). Forsythia suspensa fruit extracts and the constituent matairesinol confer anti-allergic effects in an allergic dermatitis mouse model. Journal of ethnopharmacology, 187, 49–56. https://doi.org/10.1016/j.jep.2016.04.015

  13. [13] Erceg, A., de Jong, E. M. J. G., van de Kerkhof, P. C. M., & Seyger, M. M. B. (2013). The efficacy of pulsed dye laser treatment for inflammatory skin diseases: A systematic review. Journal of the american academy of dermatology, 69(4), 609–615. https://doi.org/10.1016/j.jaad.2013.03.029

  14. [14] Haniffa, M., Gunawan, M., & Jardine, L. (2015). Human skin dendritic cells in health and disease. Journal of dermatological science, 77(2), 85–92. https://doi.org/10.1016/j.jdermsci.2014.08.012

  15. [15] Kelechi, T. J., Mueller, M., King, D. E., Madisetti, M., & Prentice, M. (2015). Impact of daily cooling treatment on skin inflammation in patients with chronic venous disease. Journal of tissue viability, 24(2), 71–79. https://doi.org/10.1016/j.jtv.2015.01.006

  16. [16] Mir, A. R., & Moinuddin. (2015). Glycoxidation of histone proteins in autoimmune disorders. Clinica chimica acta, 450, 25–30. https://doi.org/10.1016/j.cca.2015.07.029

  17. [17] Chan, P. C., Yu, C. H., Yeh, K. W., Horng, J. T., & Huang, J. L. (2016). Comorbidities of pediatric systemic lupus erythematosus: A 6-year nationwide population-based study. Journal of microbiology, immunology and infection, 49(2), 257–263. https://doi.org/10.1016/j.jmii.2014.05.001

  18. [18] Lichterfeld, A., Lahmann, N., Blume-Peytavi, U., & Kottner, J. (2016). Dry skin in nursing care receivers: A multi-centre cross-sectional prevalence study in hospitals and nursing homes. International journal of nursing studies, 56, 37–44. https://doi.org/10.1016/j.ijnurstu.2016.01.003

  19. [19] Alshevskaya, A. A., Lopatnikova, J. A., Krugleeva, O. L., Nepomnyschih, V. M., Lukinov, V. L., Karaulov, A. V, & Sennikov, S. V. (2016). Expression density of receptors to IL-1β in atopic dermatitis. Molecular immunology, 75, 92–100. https://doi.org/10.1016/j.molimm.2016.05.015

  20. [20] Fraison, J. B., Mekinian, A., Grignano, E., Kahn, J. E., Arlet, J. B., Decaux, O., … & Braun, T. (2016). Efficacy of Azacitidine in autoimmune and inflammatory disorders associated with myelodysplastic syndromes and chronic myelomonocytic leukemia. Leukemia research, 43, 13–17. https://doi.org/10.1016/j.leukres.2016.02.005

  21. [21] Babakhani, B., Houshani, M., Tapeh, S. M. T., Nosratirad, R., Shafiee, M. S. (2019). The evaluation of antioxidant and anticancer activity of alfalfa extract on MCF7 cell line. Regeneration, reconstruction & restoration (triple r), 4(1), 9–14. https://doi.org/10.22037/rrr.v4i1.29646

  22. [22] Moghaddam, M. S., Kafshgari, L. A., Houshani, M., Bahari, A., Sadeghi, B., Tapeh, S. M. T., & Shokraei, E. (2024). The role of Fe-Nx/N/V3C2 nanoelectrocatalyst based on organometallic framework in oxygen reduction activity. International journal of industrial chemistry, 15(4), 1–8. https://doi.org/10.57647/j.ijic.2024.1504.24

  23. [23] Motallebi, S., Mahmoodi, N. O., Ghanbari Pirbati, F., & Azimi, A. (2016). Saccharomyces cerevisiae as a biocatalyst for different carbonyl group under green condition. Organic chemistry research, 2(1), 39–42. https://doi.org/10.22036/org.chem..2016.13076

  24. [24] Tala-Tapeh, S. M., Mahmoodi, N., & Vaziri, A. (2015). Synthesis of bis-chalcones based on 5, 5΄-methylenebis (2-hydroxybenzaldehyde) and screening their antibacterial activity. Journal of applied chemistry, 9(32), 53–58. https://doi.org/10.22075/chem.2017.681

  25. [25] Levesque, K., Morel, N., Maltret, A., Baron, G., Masseau, A., Orquevaux, P., … & Wechsler, B. (2015). Description of 214 cases of autoimmune congenital heart block: Results of the French neonatal lupus syndrome. Autoimmunity reviews, 14(12), 1154–1160. https://doi.org/10.1016/j.autrev.2015.08.005

  26. [26] Murro, D., Novo, J., & Arvanitis, L. (2016). Asymptomatic diffuse “encephalitic” cerebral toxoplasmosis in a woman with systemic lupus erythematosus. Journal of clinical neuroscience, 29, 194–196. https://doi.org/10.1016/j.jocn.2015.12.022

  27. [27] Al-Kholy, W., Elsaid, A., Sleem, A., Fathy, H., Elshazli, R., & Settin, A. (2016). TNF-α −308 G>A and IFN-γ +874 A>T gene polymorphisms in Egyptian patients with lupus erythematosus. Meta gene, 9, 137–141. https://doi.org/10.1016/j.mgene.2016.06.002

  28. [28] Asgharkhani, E., Fathi Azarbayjani, A., Irani, S., Chiani, M., Saffari, Z., Norouzian, D., … & Atyabi, S. M. (2018). Artemisinin-loaded niosome and pegylated niosome: Physico-chemical characterization and effects on MCF-7 cell proliferation. Journal of pharmaceutical investigation, 48(3), 251–256. https://doi.org/10.1007/s40005-017-0331-y

  29. [29] Badri, S., Sailaja, P., Annagowni, N. R., Lunjala, R. S., Seshu, D. (2022). A review on niosomes as novel drug delivary system. International journal of indigenous herbs and drugs, 7(5), 87–93. https://doi.org/10.46956/ijihd.v7i5.352

  30. [30] Bahloul, B., Castillo-Henríquez, L., Jenhani, L., Aroua, N., Ftouh, M., Kalboussi, N., … & Mignet, N. (2023). Nanomedicine-based potential phyto-drug delivery systems for diabetes. Journal of drug delivery science and technology, 82, 104377. https://doi.org/10.1016/j.jddst.2023.104377

  31. [31] Baranei, M., Taheri, R. A., Tirgar, M., Saeidi, A., Oroojalian, F., Uzun, L., … & Goodarzi, V. (2021). Anticancer effect of green tea extract (GTE)-Loaded pH-responsive niosome coated with PEG against different cell lines. Materials today communications, 26, 101751. https://doi.org/10.1016/j.mtcomm.2020.101751

  32. [32] Bhardwaj, P., Tripathi, P., Gupta, R., & Pandey, S. (2020). Niosomes: A review on niosomal research in the last decade. Journal of drug delivery science and technology, 56, 101581. https://doi.org/10.1016/j.jddst.2020.101581

Published

2026-03-24

How to Cite

Osintsev, N. . (2026). Nanoencapsulation of Licorice Extract as a Skin Anti-Inflammatory. Nano Nexus & Applications, 1(1), 49-57. https://doi.org/10.48314/nna.vi.61