Polymeric Nanoparticles for Targeted Drug Delivery: An Updated Review

Authors

  • Ayda Nikzad * Department of Chemistry, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran.

https://doi.org/10.48314/nna.vi.58

Abstract

Targeted drug delivery via polymeric nanoparticles (PNPs) has emerged as a highly promising strategy to improve therapeutic outcomes while minimizing systemic toxicity. Owing to their unique physicochemical characteristics, such as biocompatibility, biodegradability, and tunable surface properties PNPs can efficiently encapsulate a wide range of therapeutic agents and deliver them selectively to pathological sites. This review provides a comprehensive analysis of the design principles, classification, synthesis methodologies, and surface functionalization strategies of polymeric nanoparticles. Their applications in cancer therapy, gene delivery, and other biomedical domains are critically evaluated. Key challenges, including potential toxicity, scalability of production, and regulatory considerations, are discussed. Finally, future directions emphasizing stimuli-responsive polymers and personalized nanomedicine approaches are highlighted.

Keywords:

Polymeric Nanoparticles, Targeted Drug Delivery, Nanomedicine, Biocompatibility, Drug Release, Cancer therapy

References

  1. [1] Kumari, A., Singla, R., Guliani, A., & Yadav, S. K. (2014). Nanoencapsulation for drug delivery. EXCLI journal, 13, 265–286. https://pmc.ncbi.nlm.nih.gov/articles/PMC4464443/

  2. [2] Parveen, S., Misra, R., & Sahoo, S. K. (2017). Nanoparticles: A boon to drug delivery, therapeutics, diagnostics and imaging. In Nanomedicine in cancer (pp. 47–98). Jenny Stanford Publishing. https://www.taylorfrancis.com/chapters/edit/10.1201/9781315114361-3/nanoparticles-boon-drug-delivery-therapeutics-diagnostics-imaging-suphiya-parveen-ranjita-misra-sanjeeb-sahoo

  3. [3] Soppimath, K. S., Aminabhavi, T. M., Kulkarni, A. R., & Rudzinski, W. E. (2001). Biodegradable polymeric nanoparticles as drug delivery devices. Journal of controlled release, 70(1–2), 1–20. https://doi.org/10.1016/S0168-3659(00)00339-4

  4. [4] Crucho, C. I. C., & Barros, M. T. (2017). Polymeric nanoparticles: A study on the preparation variables and characterization methods. Materials science and engineering: c, 80, 771–784. https://doi.org/10.1016/j.msec.2017.06.004

  5. [5] Rahimi, M., Wadajkar, A., Subramanian, K., Yousef, M., Cui, W., Hsieh, J. T., & Nguyen, K. T. (2017). In vitro evaluation of novel polymer-coated magnetic nanoparticles for controlled drug delivery. In Nanomedicine in cancer (pp. 623–645). Jenny Stanford Publishing. https://www.taylorfrancis.com/chapters/edit/10.1201/9781315114361-25/vitro-evaluation-novel-polymer-coated-magnetic-nanoparticles-controlled-drug-delivery-maham-rahimi-aniket-wadajkar-khaushik-subramanian-monet-yousef-weina-cui-jer-tsong-hsieh-kytai-truong-nguyen

  6. [6] Kwon, G. S. (2003). Polymeric micelles for delivery of poorly water-soluble compounds. Critical reviewsTM in therapeutic drug carrier systems, 20(5). https://doi.org/10.1615/CritRevTherDrugCarrierSyst.v20.i5.20

  7. [7] Danhier, F., Ansorena, E., Silva, J. M., Coco, R., Le Breton, A., & Préat, V. (2012). PLGA-based nanoparticles: An overview of biomedical applications. Journal of controlled release, 161(2), 505–522. https://doi.org/10.1016/j.jconrel.2012.01.043

  8. [8] Makadia, H. K., & Siegel, S. J. (2011). Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers, 3(3), 1377–1397. https://doi.org/10.3390/polym3031377

  9. [9] Blanco, E., Shen, H., & Ferrari, M. (2015). Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nature biotechnology, 33(9), 941–951. https://www.nature.com/articles/nbt.3330

  10. [10] Motallebi Tala Tapeh, S., Baei, M. S., & Keshel, S. H. (2021). Synthesis of thermogel modified with biomaterials as carrier for hUSSCs differentiation into cardiac cells: Physicomechanical and biological assessment. Materials science and engineering: c, 119, 111517. https://doi.org/10.1016/j.msec.2020.111517

  11. [11] Shi, J., Kantoff, P. W., Wooster, R., & Farokhzad, O. C. (2017). Cancer nanomedicine: progress, challenges and opportunities. Nature reviews cancer, 17(1), 20–37. https://www.nature.com/articles/nrc.2016.108

  12. [12] Suk, J. S., Xu, Q., Kim, N., Hanes, J., & Ensign, L. M. (2016). PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Advanced drug delivery reviews, 99, 28–51. https://doi.org/10.1016/j.addr.2015.09.012

  13. [13] Mura, S., Nicolas, J., & Couvreur, P. (2013). Stimuli-responsive nanocarriers for drug delivery. Nature materials, 12(11), 991–1003. https://www.nature.com/articles/nmat3776

  14. [14] Kamaly, N., Yameen, B., Wu, J., & Farokhzad, O. C. (2016). Degradable controlled-release polymers and polymeric nanoparticles: mechanisms of controlling drug release. Chemical reviews, 116(4), 2602–2663. https://doi.org/10.1021/acs.chemrev.5b00346

  15. [15] Hua, S., De Matos, M. B. C., Metselaar, J. M., & Storm, G. (2018). Current trends and challenges in the clinical translation of nanoparticulate nanomedicines: pathways for translational development and commercialization. Frontiers in pharmacology, 9, 790. https://doi.org/10.3389/fphar.2018.00790

  16. [16] Naahidi, S., Jafari, M., Edalat, F., Raymond, K., Khademhosseini, A., & Chen, P. (2013). Biocompatibility of engineered nanoparticles for drug delivery. Journal of controlled release, 166(2), 182–194. https://doi.org/10.1016/j.jconrel.2012.12.013

  17. [17] Bertrand, N., & Leroux, J. C. (2012). The journey of a drug-carrier in the body: An anatomo-physiological perspective. Journal of controlled release, 161(2), 152–163. https://doi.org/10.1016/j.jconrel.2011.09.098

  18. [18] Panyam, J., & Labhasetwar, V. (2003). Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Advanced drug delivery reviews, 55(3), 329–347. https://doi.org/10.1016/S0169-409X(02)00228-4

  19. [19] Palazzolo, S., Bayda, S., Hadla, M., Caligiuri, I., Corona, G., Toffoli, G., & Rizzolio, F. (2018). The clinical translation of organic nanomaterials for cancer therapy: A focus on polymeric nanoparticles, micelles, liposomes and exosomes. Current medicinal chemistry, 25(34), 4224–4268. https://doi.org/10.2174/0929867324666170830113755

  20. [20] Lammers, T., Kiessling, F., Hennink, W. E., & Storm, G. (2012). Drug targeting to tumors: Principles, pitfalls and (pre-) clinical progress. Journal of controlled release, 161(2), 175–187. https://doi.org/10.1016/j.jconrel.2011.09.063

  21. [21] Chen, X., & Mao, S. S. (2007). Titanium dioxide nanomaterials: Synthesis, properties, modifications, and applications. Chemical reviews, 107(7), 2891–2959. https://doi.org/10.1021/cr0500535

  22. [22] Torchilin, V. P. (2014). Multifunctional, stimuli-sensitive nanoparticulate systems for drug delivery. Nature reviews drug discovery, 13(11), 813–827. https://www.nature.com/articles/nrd4333

  23. [23] Pattni, B. S., Chupin, V. V, & Torchilin, V. P. (2015). New developments in liposomal drug delivery. Chemical reviews, 115(19), 10938–10966. https://doi.org/10.1021/acs.chemrev.5b00046

  24. [24] Alexis, F., Pridgen, E., Molnar, L. K., & Farokhzad, O. C. (2008). Factors affecting the clearance and biodistribution of polymeric nanoparticles. Molecular pharmaceutics, 5(4), 505–515. https://doi.org/10.1021/mp800051m

  25. [25] Hosseinzadeh, F., & Mehtarifar, H. (2025). Encapsulation of silymarin via chitosan-PLGA nanoparticles for drug delivery. Biocompounds, 2(1), 42–52. https://doi.org/10.48313/bic.vi.32

  26. [26] Askarkiaee, S., & Baei, M. S. (2025). Preparation and swelling behaviour of calcium-alginate and calcium alginate-chitosan hydrogel beads. Biocompounds, 2(1), 10–16. https://doi.org/10.48313/bic.vi.30

  27. [27] Niknejad, K., Sharifzadeh Baei, M., & Motallebi Tala Tapeh, S. (2018). Synthesis of metformin hydrochloride nanoliposomes: Evaluation of physicochemical characteristics and release kinetics. International journal of nano dimension, 9(3), 298–313. https://ijnd.tonekabon.iau.ir/article_659887.html

  28. [28] Moghaddam, M. S., Bahari, A., Houshani, M., Jafari, A., & Tapeh, S. M. T. (2024). Retracted: A review on progress in the field of conditioning of polymer fuel cell stacks. Journal of power sources, 621, 235300. https://doi.org/10.1016/j.jpowsour.2024.235300

Published

2025-03-06

How to Cite

Nikzad, A. . (2025). Polymeric Nanoparticles for Targeted Drug Delivery: An Updated Review. Nano Nexus & Applications, 1(1), 1-11. https://doi.org/10.48314/nna.vi.58