Polymeric Nanoparticles for Targeted Drug Delivery: An Updated Review
Abstract
Targeted drug delivery via polymeric nanoparticles (PNPs) has emerged as a highly promising strategy to improve therapeutic outcomes while minimizing systemic toxicity. Owing to their unique physicochemical characteristics, such as biocompatibility, biodegradability, and tunable surface properties PNPs can efficiently encapsulate a wide range of therapeutic agents and deliver them selectively to pathological sites. This review provides a comprehensive analysis of the design principles, classification, synthesis methodologies, and surface functionalization strategies of polymeric nanoparticles. Their applications in cancer therapy, gene delivery, and other biomedical domains are critically evaluated. Key challenges, including potential toxicity, scalability of production, and regulatory considerations, are discussed. Finally, future directions emphasizing stimuli-responsive polymers and personalized nanomedicine approaches are highlighted.
Keywords:
Polymeric Nanoparticles, Targeted Drug Delivery, Nanomedicine, Biocompatibility, Drug Release, Cancer therapyReferences
- [1] Kumari, A., Singla, R., Guliani, A., & Yadav, S. K. (2014). Nanoencapsulation for drug delivery. EXCLI journal, 13, 265–286. https://pmc.ncbi.nlm.nih.gov/articles/PMC4464443/
- [2] Parveen, S., Misra, R., & Sahoo, S. K. (2017). Nanoparticles: A boon to drug delivery, therapeutics, diagnostics and imaging. In Nanomedicine in cancer (pp. 47–98). Jenny Stanford Publishing. https://www.taylorfrancis.com/chapters/edit/10.1201/9781315114361-3/nanoparticles-boon-drug-delivery-therapeutics-diagnostics-imaging-suphiya-parveen-ranjita-misra-sanjeeb-sahoo
- [3] Soppimath, K. S., Aminabhavi, T. M., Kulkarni, A. R., & Rudzinski, W. E. (2001). Biodegradable polymeric nanoparticles as drug delivery devices. Journal of controlled release, 70(1–2), 1–20. https://doi.org/10.1016/S0168-3659(00)00339-4
- [4] Crucho, C. I. C., & Barros, M. T. (2017). Polymeric nanoparticles: A study on the preparation variables and characterization methods. Materials science and engineering: c, 80, 771–784. https://doi.org/10.1016/j.msec.2017.06.004
- [5] Rahimi, M., Wadajkar, A., Subramanian, K., Yousef, M., Cui, W., Hsieh, J. T., & Nguyen, K. T. (2017). In vitro evaluation of novel polymer-coated magnetic nanoparticles for controlled drug delivery. In Nanomedicine in cancer (pp. 623–645). Jenny Stanford Publishing. https://www.taylorfrancis.com/chapters/edit/10.1201/9781315114361-25/vitro-evaluation-novel-polymer-coated-magnetic-nanoparticles-controlled-drug-delivery-maham-rahimi-aniket-wadajkar-khaushik-subramanian-monet-yousef-weina-cui-jer-tsong-hsieh-kytai-truong-nguyen
- [6] Kwon, G. S. (2003). Polymeric micelles for delivery of poorly water-soluble compounds. Critical reviewsTM in therapeutic drug carrier systems, 20(5). https://doi.org/10.1615/CritRevTherDrugCarrierSyst.v20.i5.20
- [7] Danhier, F., Ansorena, E., Silva, J. M., Coco, R., Le Breton, A., & Préat, V. (2012). PLGA-based nanoparticles: An overview of biomedical applications. Journal of controlled release, 161(2), 505–522. https://doi.org/10.1016/j.jconrel.2012.01.043
- [8] Makadia, H. K., & Siegel, S. J. (2011). Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers, 3(3), 1377–1397. https://doi.org/10.3390/polym3031377
- [9] Blanco, E., Shen, H., & Ferrari, M. (2015). Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nature biotechnology, 33(9), 941–951. https://www.nature.com/articles/nbt.3330
- [10] Motallebi Tala Tapeh, S., Baei, M. S., & Keshel, S. H. (2021). Synthesis of thermogel modified with biomaterials as carrier for hUSSCs differentiation into cardiac cells: Physicomechanical and biological assessment. Materials science and engineering: c, 119, 111517. https://doi.org/10.1016/j.msec.2020.111517
- [11] Shi, J., Kantoff, P. W., Wooster, R., & Farokhzad, O. C. (2017). Cancer nanomedicine: progress, challenges and opportunities. Nature reviews cancer, 17(1), 20–37. https://www.nature.com/articles/nrc.2016.108
- [12] Suk, J. S., Xu, Q., Kim, N., Hanes, J., & Ensign, L. M. (2016). PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Advanced drug delivery reviews, 99, 28–51. https://doi.org/10.1016/j.addr.2015.09.012
- [13] Mura, S., Nicolas, J., & Couvreur, P. (2013). Stimuli-responsive nanocarriers for drug delivery. Nature materials, 12(11), 991–1003. https://www.nature.com/articles/nmat3776
- [14] Kamaly, N., Yameen, B., Wu, J., & Farokhzad, O. C. (2016). Degradable controlled-release polymers and polymeric nanoparticles: mechanisms of controlling drug release. Chemical reviews, 116(4), 2602–2663. https://doi.org/10.1021/acs.chemrev.5b00346
- [15] Hua, S., De Matos, M. B. C., Metselaar, J. M., & Storm, G. (2018). Current trends and challenges in the clinical translation of nanoparticulate nanomedicines: pathways for translational development and commercialization. Frontiers in pharmacology, 9, 790. https://doi.org/10.3389/fphar.2018.00790
- [16] Naahidi, S., Jafari, M., Edalat, F., Raymond, K., Khademhosseini, A., & Chen, P. (2013). Biocompatibility of engineered nanoparticles for drug delivery. Journal of controlled release, 166(2), 182–194. https://doi.org/10.1016/j.jconrel.2012.12.013
- [17] Bertrand, N., & Leroux, J. C. (2012). The journey of a drug-carrier in the body: An anatomo-physiological perspective. Journal of controlled release, 161(2), 152–163. https://doi.org/10.1016/j.jconrel.2011.09.098
- [18] Panyam, J., & Labhasetwar, V. (2003). Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Advanced drug delivery reviews, 55(3), 329–347. https://doi.org/10.1016/S0169-409X(02)00228-4
- [19] Palazzolo, S., Bayda, S., Hadla, M., Caligiuri, I., Corona, G., Toffoli, G., & Rizzolio, F. (2018). The clinical translation of organic nanomaterials for cancer therapy: A focus on polymeric nanoparticles, micelles, liposomes and exosomes. Current medicinal chemistry, 25(34), 4224–4268. https://doi.org/10.2174/0929867324666170830113755
- [20] Lammers, T., Kiessling, F., Hennink, W. E., & Storm, G. (2012). Drug targeting to tumors: Principles, pitfalls and (pre-) clinical progress. Journal of controlled release, 161(2), 175–187. https://doi.org/10.1016/j.jconrel.2011.09.063
- [21] Chen, X., & Mao, S. S. (2007). Titanium dioxide nanomaterials: Synthesis, properties, modifications, and applications. Chemical reviews, 107(7), 2891–2959. https://doi.org/10.1021/cr0500535
- [22] Torchilin, V. P. (2014). Multifunctional, stimuli-sensitive nanoparticulate systems for drug delivery. Nature reviews drug discovery, 13(11), 813–827. https://www.nature.com/articles/nrd4333
- [23] Pattni, B. S., Chupin, V. V, & Torchilin, V. P. (2015). New developments in liposomal drug delivery. Chemical reviews, 115(19), 10938–10966. https://doi.org/10.1021/acs.chemrev.5b00046
- [24] Alexis, F., Pridgen, E., Molnar, L. K., & Farokhzad, O. C. (2008). Factors affecting the clearance and biodistribution of polymeric nanoparticles. Molecular pharmaceutics, 5(4), 505–515. https://doi.org/10.1021/mp800051m
- [25] Hosseinzadeh, F., & Mehtarifar, H. (2025). Encapsulation of silymarin via chitosan-PLGA nanoparticles for drug delivery. Biocompounds, 2(1), 42–52. https://doi.org/10.48313/bic.vi.32
- [26] Askarkiaee, S., & Baei, M. S. (2025). Preparation and swelling behaviour of calcium-alginate and calcium alginate-chitosan hydrogel beads. Biocompounds, 2(1), 10–16. https://doi.org/10.48313/bic.vi.30
- [27] Niknejad, K., Sharifzadeh Baei, M., & Motallebi Tala Tapeh, S. (2018). Synthesis of metformin hydrochloride nanoliposomes: Evaluation of physicochemical characteristics and release kinetics. International journal of nano dimension, 9(3), 298–313. https://ijnd.tonekabon.iau.ir/article_659887.html
- [28] Moghaddam, M. S., Bahari, A., Houshani, M., Jafari, A., & Tapeh, S. M. T. (2024). Retracted: A review on progress in the field of conditioning of polymer fuel cell stacks. Journal of power sources, 621, 235300. https://doi.org/10.1016/j.jpowsour.2024.235300