Gold Nanoparticles in Targeted Drug Delivery: Synthesis, Mechanisms, Applications, and Future Perspectives

Authors

  • Nazanin Malek Mohammadi * Department of Mechanical Engineering, Morvarid Intelligent Industrial Systems Research Group, Iran.

https://doi.org/10.48314/nna.vi.57

Abstract

Over the past few decades, significant advances in nanotechnology have revolutionized drug delivery systems. Among various nanoscale materials, gold nanoparticles (AuNPs) have emerged as particularly promising platforms due to their unique physicochemical characteristics such as excellent chemical stability, tunable surface functionality, outstanding biocompatibility, and distinctive optical properties associated with surface plasmon resonance (SPR). These attributes enable AuNPs to deliver chemotherapeutic agents, nucleic acids, proteins, and other bioactive molecules to target cells with high precision and controllability. This review comprehensively summarizes recent progress in the synthesis strategies and structural features of AuNPs, followed by an in-depth discussion of their drug delivery mechanisms, including passive and active targeting as well as stimuli-responsive systems triggered by pH, light, and enzymatic activity. The therapeutic applications of AuNPs in cancer therapy, gene delivery, antimicrobial treatment, and bioimaging are also highlighted. Finally, the major challenges hindering clinical translation and future perspectives of AuNP-based nanomedicine are critically discussed.

Keywords:

Gold nanoparticles, Targeted drug delivery, Nanomedicine, Controlled release, Active targeting, Biocompatibility

References

  1. [1] Georgeous, J., AlSawaftah, N., Abuwatfa, W. H., & Husseini, G. A. (2024). Review of gold nanoparticles: Synthesis, properties, shapes, cellular uptake, targeting, release mechanisms and applications in drug delivery and therapy. Pharmaceutics, 16(10), 1332. https://doi.org/10.3390/pharmaceutics16101332

  2. [2] Alam, A., Sahu, A., Nayak, S. (2025). A review on gold nanoparticles: Properties, synthesis and biomedical application in drug delivery and cancer therapy. International journal of innovative science & research technology (IJISRT), 10(5), 469–674. https://doi.org/10.38124/ijisrt/25may428%0A%0A

  3. [3] Huang, J., Xu, Z., Jiang, Y., Law, W., Dong, B., Zeng, X., …& Yang, C. (2021). Metal organic framework-coated gold nanorod as an on-demand drug delivery platform for chemo-photothermal cancer therapy. Journal of nanobiotechnology, 19(1), 219. https://doi.org/10.1186/s12951-021-00961-x

  4. [4] Zhao, J., Lee, P., Wallace, M. J., Marites, P. M. (2015). Gold nanoparticles in cancer therapy: Efficacy, biodistribution, and toxicity. Current pharmaceutical design, 21(29), 4240–4251(12). https://doi.org/10.2174/1381612821666150901103032

  5. [5] Chapa, C., Carreón González, J. L., &Garcia Casillas, P. E.(2023). Gold nanoparticles as drug carriers: The role of silica and peg as surface coatings in optimizing drug loading. Micromachines,14(2), 451. https://doi.org/10.3390/mi14020451

  6. [6] Yañez-Aulestia, A., Gupta, N. K., Hernández, M., Osorio-Toribio, G., Sánchez-González, E., Guzmán-Vargas, A., …& Lima, E. (2022). Gold nanoparticles: Current and upcoming biomedical applications in sensing, drug, and gene delivery. Chemical communications, 58(78), 10886–10895. https://doi.org/10.1039/D2CC04826D

  7. [7] Mohammed, I. A., & Al-Gawhari, F. J. (2020). Gold nanoparticle: Synthesis, functionalization, enhancement, drug delivery and therapy: A review. Systematic reviews in pharmacy, 11(6), 888-910. http://dx.doi.org/10.5530/srp.2019.2.04

  8. [8] Song, M., Aipire, A., Dilxat, E., Li, J., Xia, G., Jiang, Z., … & Li, J. (2024). Research progress of polysaccharide-gold nanocomplexes in drug delivery. Pharmaceutics, 16(1), 88. https://doi.org/10.3390/pharmaceutics16010088

  9. [9] Sharma, N., Sachan, R. S. K., Singh, A., Karnwal, A., Shidiki, A., & Kumar, G. (2024). Plant-mediated gold nanoparticles in cancer therapy: Exploring anti-cancer mechanisms, drug delivery applications, and future prospects. Frontiers in nanotechnology, 6, 1490980. https://doi.org/10.3389/fnano.2024.1490980

  10. [10] Zhang, R., Kiessling, F., Lammers, T., & Pallares, R. M. (2023). Clinical translation of gold nanoparticles. Drug delivery and translational research, 13(2), 378–385. https://doi.org/10.1007/s13346-022-01232-4

  11. [11] Kim, H. M., Park, J. H., Choi, Y. J., Oh, J. M., & Park, J. (2023). Hyaluronic acid-coated gold nanoparticles as a controlled drug delivery system for poorly water-soluble drugs. RSC advances, 13(8), 5529–5537. https://doi.org/10.1039/D2RA07276A

  12. [12] Musmade, N. P., Satpute, D. V. M., & Ghodke, S. R. (2022). Antiretroviral drug loaded gold nanoparticles recent trends and its applications. Journal of population therapeutics and clinical pharmacology, 29(5), 51–70. https://doi.org/10.53555/jptcp.v29i5.6577

  13. [13] Cosma, M., Mocan, T., Delcea, C., Pop, T., Mosteanu, O., & Mocan, L. (2025). Gold nanoparticles as targeted drug delivery systems for liver cancer: A systematic review of tumor targeting efficiency and toxicity profiles. International journal of molecular sciences, 26(16), 7917. https://doi.org/10.3390/ijms26167917

  14. [14] Yusuf, A., Almotairy, A. R. Z., Henidi, H., Alshehri, O. Y., & Aldughaim, M. S. (2023). Nanoparticles as drug delivery systems: A review of the implication of nanoparticles’ physicochemical properties on responses in biological systems. Polymers, 15(7), 1596. https://doi.org/10.3390/polym15071596

  15. [15] Duan, L., Li, X., Ji, R., Hao, Z., Kong, M., Wen, X., … & Ma, S. (2023). Nanoparticle-based drug delivery systems: An inspiring therapeutic strategy for neurodegenerative diseases. Polymers, 15(9), 2196. https://doi.org/10.3390/polym15092196

  16. [16] Hajipour, S., & Ghiasvand, A. R. Nanoparticle carriers for drug delivery: An updated review. Review article pharmaceutical nanotechnology (bentham science), 12. https://doi.org/10.2174/0122117385340986241208123048

  17. [17] Mittal, M., Juneja, S., Pandey, N., & Mittal, R. (2025). Nanoparticle-based drug delivery systems: Current advances and future directions. Current drug targets, 26. https://doi.org/10.2174/0113894501393535250903071153

  18. [18] Shivani, S., & Ravindranath, S. (2019). Nanoparticle in pharmaceutical drug delivery system: A review. Journal of drug delivery & therapeutics, 9(3), 487–491. https://doi.org/10.22270/jddt.v9i3.2772

  19. [19] Moinard-Checot, D., Chevalier, Y., Briançon, S., Fessi, H., & Guinebretière, S. (2006). Nanoparticles for drug delivery: Review of the formulation and process difficulties illustrated by the emulsion-diffusion process. Journal of nanoscience and nanotechnology, 6(9–10), 2664–2681. https://doi.org/10.1166/jnn.2006.479

  20. [20] Patra, J. K., Das, G., Fraceto, L. F., Campos, E. V. R., Rodriguez-Torres, M. D. P., Acosta-Torres, L. S., … & Seung Shin, H. (2018). Nano based drug delivery systems: Recent developments and future prospects. Journal of nanobiotechnology, 16(1), 71. https://doi.org/10.1186/s12951-018-0392-8

  21. [21] De Jong, W. H., & Borm, P. J. A. (2008). Drug delivery and nanoparticles: Applications and hazards. International journal of nanomedicine, 3(2), 133–149. https://doi.org/10.2147/ijn.s596

  22. [22] Rahman, M. A., Jalouli, M., Bhajan, S. K., Al-Zharani, M., & Harrath, A. H. (2025). A comprehensive review of nanoparticle-based drug delivery for modulating PI3K/AKT/mTOR-Mediated autophagy in cancer. International journal of molecular sciences, 26(5), 1868. https://doi.org/10.3390/ijms26051868

  23. [23] Siddique, S., & Chow, J. C. L. (2020). Gold nanoparticles for drug delivery and cancer therapy. Applied sciences, 10(11), 3824. https://doi.org/10.3390/app10113824

  24. [24] Jia, L., Zhang, P., Sun, H., Dai, Y., Liang, S., Bai, X., & Feng, L. (2021). Optimization of nanoparticles for smart drug delivery: A review. Nanomaterials, 11(11), 2790. https://doi.org/10.3390/nano11112790

  25. [25] Mahdavi, Z., Rezvani, H., & Moraveji, M. K. (2020). Core-shell nanoparticles used in drug delivery-microfluidics: A review. RSC advances, 10(31), 18280–18295. https://doi.org/10.1039/D0RA01032D

  26. [26] Kranti, P., Ramanlal, K., Madhuri, K., & Vinayak, Z. (2021). A review on nanoparticles drug delivery system. Journal of drug delivery & therapeutics, 11(4), 101–104. http://dx.doi.org/10.22270/jddt.v11i4.4865

  27. [27] Mazdaei, M., & Asare-Addo, K. (2022). A mini-review of nanocarriers in drug delivery systems. British journal of pharmacy, 7(1), 1–13. https://search.informit.org/doi/abs/10.3316/informit.497625095829065

  28. [28] Jahan, N., Huda, N. U., Fatima, A., & Shamshad, H. (2023). Recent advances and future challenges of nano-based drug delivery systems. Nano and medical materials, 3(1), 121. https://doi.org/10.59400/nmm.v3i1.121

  29. [29] Li, Z., Xiao, C., Yang, X., & Li, Z. (2025). Progress in the mechanical properties of nanoparticles for tumor-targeting delivery. Chemical society reviews, 54(11), 9391–9420. https://doi.org/10.1039/D3CS00912B

  30. [30] Gressler, S., Hipfinger, C., Part, F., Pavlicek, A., Zafiu, C., & Giese, B. (2025). A systematic review of nanocarriers used in medicine and beyond—definition and categorization framework. Journal of nanobiotechnology, 23(1), 90. https://doi.org/10.1186/s12951-025-03113-7

  31. [31] Haripriyaa, M., & Suthindhiran, K. (2023). Pharmacokinetics of nanoparticles: Current knowledge, future directions and its implications in drug delivery. Future journal of pharmaceutical sciences, 9(1), 113. https://doi.org/10.1186/s43094-023-00569-y

  32. [32] El Yousfi, R., Brahmi, M., Dalli, M., Achalhi, N., Azougagh, O., Tahani, A., … & El Idrissi, A. (2023). Recent advances in nanoparticle development for drug delivery: A comprehensive review of polycaprolactone-based multi-arm architectures. Polymers, 15(8), 1835. https://doi.org/10.3390/polym15081835

  33. [33] Afzal, O., Altamimi, A. S. A., Nadeem, M. S., Alzarea, S. I., Almalki, W. H., Tariq, A., … & Kazmi, I. (2022). Nanoparticles in drug delivery: From history to therapeutic applications. Nanomaterials, 12(24), 4494. https://doi.org/10.3390/nano12244494

  34. [34] Di Stefano, A. (2023). Nanotechnology in targeted drug delivery. International journal of molecular sciences, 24(9), 8194. https://doi.org/10.3390/ijms24098194

  35. [35] Ndung’u, J. W., Muruthi, C. W., Gathirwa, J., Sauli, E., Swai, H. S. (2025). Nanoparticle-based drug delivery system: A review of recent. International journal of nanobiotechnology (Journalspub), 11(1), 1–12. https://journalspub.com/wp-content/uploads/2025/03/parul.pdf

  36. [36] Tapeh, S. M. T., Baei, M. S., & Keshel, S. H. (2021). Synthesis of thermogel modified with biomaterials as carrier for hUSSCs differentiation into cardiac cells: Physicomechanical and biological assessment. Materials science and engineering: c, 119, 111517. https://doi.org/10.1016/j.msec.2020.111517

  37. [37] Hosseinzadeh, F., & Mehtarifar, H. (2025). Encapsulation of silymarin via Chitosan-PLGA nanoparticles for drug delivery. Biocompounds (biocompd.), 2(1), 42–52. file:///C:/Users/Admin/Downloads/BIC-2-1-4.pdf

  38. [38] Askarkiaee, S., & Baei, M. S. (2025). Preparation and swelling behaviour of calcium-alginate and calcium alginate-chitosan hydrogel beads. Biocompounds, 2(1), 10–16. https://doi.org/10.48313/bic.vi.30

  39. [39] Niknejad, K., Sharifzadeh Baei, M., Motallebi Tala Tapeh, S. (2018). Synthesis of metformin hydrochloride nanoliposomes: Evaluation of physicochemical characteristics and release kinetics, 9(3), 298–313. https://ijnd.tonekabon.iau.ir/article_659887.html

  40. [40] Soleimani Moghaddam, M. S., Bahari, A., Houshani, M., Jafari, A., & Motallebi Tala Tapeh, S. (2024). Retracted: A review on progress in the field of conditioning of polymer fuel cell stacks. Journal of power sources, 621, 235300. https://doi.org/10.1016/j.jpowsour.2024.235300

Published

2025-03-17

How to Cite

Malek Mohammadi , N. . (2025). Gold Nanoparticles in Targeted Drug Delivery: Synthesis, Mechanisms, Applications, and Future Perspectives. Nano Nexus & Applications, 1(1), 24-35. https://doi.org/10.48314/nna.vi.57