Gold Nanoparticles in Targeted Drug Delivery: Synthesis, Mechanisms, Applications, and Future Perspectives
Abstract
Over the past few decades, significant advances in nanotechnology have revolutionized drug delivery systems. Among various nanoscale materials, gold nanoparticles (AuNPs) have emerged as particularly promising platforms due to their unique physicochemical characteristics such as excellent chemical stability, tunable surface functionality, outstanding biocompatibility, and distinctive optical properties associated with surface plasmon resonance (SPR). These attributes enable AuNPs to deliver chemotherapeutic agents, nucleic acids, proteins, and other bioactive molecules to target cells with high precision and controllability. This review comprehensively summarizes recent progress in the synthesis strategies and structural features of AuNPs, followed by an in-depth discussion of their drug delivery mechanisms, including passive and active targeting as well as stimuli-responsive systems triggered by pH, light, and enzymatic activity. The therapeutic applications of AuNPs in cancer therapy, gene delivery, antimicrobial treatment, and bioimaging are also highlighted. Finally, the major challenges hindering clinical translation and future perspectives of AuNP-based nanomedicine are critically discussed.
Keywords:
Gold nanoparticles, Targeted drug delivery, Nanomedicine, Controlled release, Active targeting, BiocompatibilityReferences
- [1] Georgeous, J., AlSawaftah, N., Abuwatfa, W. H., & Husseini, G. A. (2024). Review of gold nanoparticles: Synthesis, properties, shapes, cellular uptake, targeting, release mechanisms and applications in drug delivery and therapy. Pharmaceutics, 16(10), 1332. https://doi.org/10.3390/pharmaceutics16101332
- [2] Alam, A., Sahu, A., Nayak, S. (2025). A review on gold nanoparticles: Properties, synthesis and biomedical application in drug delivery and cancer therapy. International journal of innovative science & research technology (IJISRT), 10(5), 469–674. https://doi.org/10.38124/ijisrt/25may428%0A%0A
- [3] Huang, J., Xu, Z., Jiang, Y., Law, W., Dong, B., Zeng, X., …& Yang, C. (2021). Metal organic framework-coated gold nanorod as an on-demand drug delivery platform for chemo-photothermal cancer therapy. Journal of nanobiotechnology, 19(1), 219. https://doi.org/10.1186/s12951-021-00961-x
- [4] Zhao, J., Lee, P., Wallace, M. J., Marites, P. M. (2015). Gold nanoparticles in cancer therapy: Efficacy, biodistribution, and toxicity. Current pharmaceutical design, 21(29), 4240–4251(12). https://doi.org/10.2174/1381612821666150901103032
- [5] Chapa, C., Carreón González, J. L., &Garcia Casillas, P. E.(2023). Gold nanoparticles as drug carriers: The role of silica and peg as surface coatings in optimizing drug loading. Micromachines,14(2), 451. https://doi.org/10.3390/mi14020451
- [6] Yañez-Aulestia, A., Gupta, N. K., Hernández, M., Osorio-Toribio, G., Sánchez-González, E., Guzmán-Vargas, A., …& Lima, E. (2022). Gold nanoparticles: Current and upcoming biomedical applications in sensing, drug, and gene delivery. Chemical communications, 58(78), 10886–10895. https://doi.org/10.1039/D2CC04826D
- [7] Mohammed, I. A., & Al-Gawhari, F. J. (2020). Gold nanoparticle: Synthesis, functionalization, enhancement, drug delivery and therapy: A review. Systematic reviews in pharmacy, 11(6), 888-910. http://dx.doi.org/10.5530/srp.2019.2.04
- [8] Song, M., Aipire, A., Dilxat, E., Li, J., Xia, G., Jiang, Z., … & Li, J. (2024). Research progress of polysaccharide-gold nanocomplexes in drug delivery. Pharmaceutics, 16(1), 88. https://doi.org/10.3390/pharmaceutics16010088
- [9] Sharma, N., Sachan, R. S. K., Singh, A., Karnwal, A., Shidiki, A., & Kumar, G. (2024). Plant-mediated gold nanoparticles in cancer therapy: Exploring anti-cancer mechanisms, drug delivery applications, and future prospects. Frontiers in nanotechnology, 6, 1490980. https://doi.org/10.3389/fnano.2024.1490980
- [10] Zhang, R., Kiessling, F., Lammers, T., & Pallares, R. M. (2023). Clinical translation of gold nanoparticles. Drug delivery and translational research, 13(2), 378–385. https://doi.org/10.1007/s13346-022-01232-4
- [11] Kim, H. M., Park, J. H., Choi, Y. J., Oh, J. M., & Park, J. (2023). Hyaluronic acid-coated gold nanoparticles as a controlled drug delivery system for poorly water-soluble drugs. RSC advances, 13(8), 5529–5537. https://doi.org/10.1039/D2RA07276A
- [12] Musmade, N. P., Satpute, D. V. M., & Ghodke, S. R. (2022). Antiretroviral drug loaded gold nanoparticles recent trends and its applications. Journal of population therapeutics and clinical pharmacology, 29(5), 51–70. https://doi.org/10.53555/jptcp.v29i5.6577
- [13] Cosma, M., Mocan, T., Delcea, C., Pop, T., Mosteanu, O., & Mocan, L. (2025). Gold nanoparticles as targeted drug delivery systems for liver cancer: A systematic review of tumor targeting efficiency and toxicity profiles. International journal of molecular sciences, 26(16), 7917. https://doi.org/10.3390/ijms26167917
- [14] Yusuf, A., Almotairy, A. R. Z., Henidi, H., Alshehri, O. Y., & Aldughaim, M. S. (2023). Nanoparticles as drug delivery systems: A review of the implication of nanoparticles’ physicochemical properties on responses in biological systems. Polymers, 15(7), 1596. https://doi.org/10.3390/polym15071596
- [15] Duan, L., Li, X., Ji, R., Hao, Z., Kong, M., Wen, X., … & Ma, S. (2023). Nanoparticle-based drug delivery systems: An inspiring therapeutic strategy for neurodegenerative diseases. Polymers, 15(9), 2196. https://doi.org/10.3390/polym15092196
- [16] Hajipour, S., & Ghiasvand, A. R. Nanoparticle carriers for drug delivery: An updated review. Review article pharmaceutical nanotechnology (bentham science), 12. https://doi.org/10.2174/0122117385340986241208123048
- [17] Mittal, M., Juneja, S., Pandey, N., & Mittal, R. (2025). Nanoparticle-based drug delivery systems: Current advances and future directions. Current drug targets, 26. https://doi.org/10.2174/0113894501393535250903071153
- [18] Shivani, S., & Ravindranath, S. (2019). Nanoparticle in pharmaceutical drug delivery system: A review. Journal of drug delivery & therapeutics, 9(3), 487–491. https://doi.org/10.22270/jddt.v9i3.2772
- [19] Moinard-Checot, D., Chevalier, Y., Briançon, S., Fessi, H., & Guinebretière, S. (2006). Nanoparticles for drug delivery: Review of the formulation and process difficulties illustrated by the emulsion-diffusion process. Journal of nanoscience and nanotechnology, 6(9–10), 2664–2681. https://doi.org/10.1166/jnn.2006.479
- [20] Patra, J. K., Das, G., Fraceto, L. F., Campos, E. V. R., Rodriguez-Torres, M. D. P., Acosta-Torres, L. S., … & Seung Shin, H. (2018). Nano based drug delivery systems: Recent developments and future prospects. Journal of nanobiotechnology, 16(1), 71. https://doi.org/10.1186/s12951-018-0392-8
- [21] De Jong, W. H., & Borm, P. J. A. (2008). Drug delivery and nanoparticles: Applications and hazards. International journal of nanomedicine, 3(2), 133–149. https://doi.org/10.2147/ijn.s596
- [22] Rahman, M. A., Jalouli, M., Bhajan, S. K., Al-Zharani, M., & Harrath, A. H. (2025). A comprehensive review of nanoparticle-based drug delivery for modulating PI3K/AKT/mTOR-Mediated autophagy in cancer. International journal of molecular sciences, 26(5), 1868. https://doi.org/10.3390/ijms26051868
- [23] Siddique, S., & Chow, J. C. L. (2020). Gold nanoparticles for drug delivery and cancer therapy. Applied sciences, 10(11), 3824. https://doi.org/10.3390/app10113824
- [24] Jia, L., Zhang, P., Sun, H., Dai, Y., Liang, S., Bai, X., & Feng, L. (2021). Optimization of nanoparticles for smart drug delivery: A review. Nanomaterials, 11(11), 2790. https://doi.org/10.3390/nano11112790
- [25] Mahdavi, Z., Rezvani, H., & Moraveji, M. K. (2020). Core-shell nanoparticles used in drug delivery-microfluidics: A review. RSC advances, 10(31), 18280–18295. https://doi.org/10.1039/D0RA01032D
- [26] Kranti, P., Ramanlal, K., Madhuri, K., & Vinayak, Z. (2021). A review on nanoparticles drug delivery system. Journal of drug delivery & therapeutics, 11(4), 101–104. http://dx.doi.org/10.22270/jddt.v11i4.4865
- [27] Mazdaei, M., & Asare-Addo, K. (2022). A mini-review of nanocarriers in drug delivery systems. British journal of pharmacy, 7(1), 1–13. https://search.informit.org/doi/abs/10.3316/informit.497625095829065
- [28] Jahan, N., Huda, N. U., Fatima, A., & Shamshad, H. (2023). Recent advances and future challenges of nano-based drug delivery systems. Nano and medical materials, 3(1), 121. https://doi.org/10.59400/nmm.v3i1.121
- [29] Li, Z., Xiao, C., Yang, X., & Li, Z. (2025). Progress in the mechanical properties of nanoparticles for tumor-targeting delivery. Chemical society reviews, 54(11), 9391–9420. https://doi.org/10.1039/D3CS00912B
- [30] Gressler, S., Hipfinger, C., Part, F., Pavlicek, A., Zafiu, C., & Giese, B. (2025). A systematic review of nanocarriers used in medicine and beyond—definition and categorization framework. Journal of nanobiotechnology, 23(1), 90. https://doi.org/10.1186/s12951-025-03113-7
- [31] Haripriyaa, M., & Suthindhiran, K. (2023). Pharmacokinetics of nanoparticles: Current knowledge, future directions and its implications in drug delivery. Future journal of pharmaceutical sciences, 9(1), 113. https://doi.org/10.1186/s43094-023-00569-y
- [32] El Yousfi, R., Brahmi, M., Dalli, M., Achalhi, N., Azougagh, O., Tahani, A., … & El Idrissi, A. (2023). Recent advances in nanoparticle development for drug delivery: A comprehensive review of polycaprolactone-based multi-arm architectures. Polymers, 15(8), 1835. https://doi.org/10.3390/polym15081835
- [33] Afzal, O., Altamimi, A. S. A., Nadeem, M. S., Alzarea, S. I., Almalki, W. H., Tariq, A., … & Kazmi, I. (2022). Nanoparticles in drug delivery: From history to therapeutic applications. Nanomaterials, 12(24), 4494. https://doi.org/10.3390/nano12244494
- [34] Di Stefano, A. (2023). Nanotechnology in targeted drug delivery. International journal of molecular sciences, 24(9), 8194. https://doi.org/10.3390/ijms24098194
- [35] Ndung’u, J. W., Muruthi, C. W., Gathirwa, J., Sauli, E., Swai, H. S. (2025). Nanoparticle-based drug delivery system: A review of recent. International journal of nanobiotechnology (Journalspub), 11(1), 1–12. https://journalspub.com/wp-content/uploads/2025/03/parul.pdf
- [36] Tapeh, S. M. T., Baei, M. S., & Keshel, S. H. (2021). Synthesis of thermogel modified with biomaterials as carrier for hUSSCs differentiation into cardiac cells: Physicomechanical and biological assessment. Materials science and engineering: c, 119, 111517. https://doi.org/10.1016/j.msec.2020.111517
- [37] Hosseinzadeh, F., & Mehtarifar, H. (2025). Encapsulation of silymarin via Chitosan-PLGA nanoparticles for drug delivery. Biocompounds (biocompd.), 2(1), 42–52. file:///C:/Users/Admin/Downloads/BIC-2-1-4.pdf
- [38] Askarkiaee, S., & Baei, M. S. (2025). Preparation and swelling behaviour of calcium-alginate and calcium alginate-chitosan hydrogel beads. Biocompounds, 2(1), 10–16. https://doi.org/10.48313/bic.vi.30
- [39] Niknejad, K., Sharifzadeh Baei, M., Motallebi Tala Tapeh, S. (2018). Synthesis of metformin hydrochloride nanoliposomes: Evaluation of physicochemical characteristics and release kinetics, 9(3), 298–313. https://ijnd.tonekabon.iau.ir/article_659887.html
- [40] Soleimani Moghaddam, M. S., Bahari, A., Houshani, M., Jafari, A., & Motallebi Tala Tapeh, S. (2024). Retracted: A review on progress in the field of conditioning of polymer fuel cell stacks. Journal of power sources, 621, 235300. https://doi.org/10.1016/j.jpowsour.2024.235300