Targeted Cardiovascular Therapy Using Nanoparticles: Advances and Perspectives
Abstract
Cardiovascular Diseases (CVDs) remain the leading cause of mortality worldwide, posing substantial public health and economic burdens despite remarkable progress in modern medicine. Conventional pharmacological and surgical interventions often lack tissue specificity, resulting in systemic side effects and suboptimal therapeutic efficacy. In recent years, nanotechnology has emerged as a promising platform for the diagnosis and treatment of CVDs, enabling targeted drug delivery, enhanced bioavailability, and controlled release of therapeutic agents. Various classes of nanoparticles, including lipid-based, polymeric, metallic, and biomimetic systems, have been engineered to deliver drugs, genes, or imaging agents directly to diseased cardiovascular tissues. These nanocarriers can be tailored to recognize specific molecular markers or respond to pathological stimuli, thereby improving selectivity and therapeutic precision. Despite encouraging preclinical outcomes, several barriers continue to hinder clinical translation, such as limited biocompatibility data, immune system clearance, manufacturing scalability, and stringent regulatory requirements. This review provides an up-to-date overview of nanoparticle-based targeted therapies in cardiovascular medicine, highlighting current design strategies, therapeutic applications, and remaining challenges. It also discusses future perspectives and translational considerations to advance the development of safe and effective cardiovascular nanotherapeutics.
Keywords:
Nanoparticles, Targeted therapy, Cardiovascular diseases, Drug delivery, NanomedicineReferences
- [1] Gerhardt, T., Gerhardt, L. M., Ouwerkerk, W., Roth, G. A., Dickstein, K., Collins, S. P., & Angermann, C. E. (2023). Multimorbidity in patients with acute heart failure across world regions and country income levels (report-HF): A prospective, multicentre, global cohort study. The lancet global health, 11(12), e1874-e1884.
- [2] Berlowitz, J. B., Xie, W., Harlow, A. F., Hamburg, N. M., Blaha, M. J., Bhatnagar, A., & Stokes, A. C. (2022). E-cigarette use and risk of cardiovascular disease: A longitudinal analysis of the PATH study (2013–2019). Circulation, 145(20), 1557-1559.
- [3] Fang, J., Nakamura, H., & Maeda, H. (2011). The EPR effect: Unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Advanced drug delivery reviews, 63(3), 136–151. https://doi.org/10.1016/j.addr.2010.04.009
- [4] Omidian, H., Babanejad, N., & Cubeddu, L. X. (2023). Nanosystems in cardiovascular medicine: advancements, applications, and future perspectives. Pharmaceutics, 15(7), 1935. https://doi.org/10.3390/pharmaceutics15071935
- [5] Nasir, k., Saba, s., Hussa, in, a., Ramzan, k., & Mushtaq, s. (2023). Nano particle based drug delivery in cancer therapy. Current studies in health and life sciences, 169. https://B2n.ir/sp9339
- [6] Wang, Y., Wang, J., Gao, R., Liu, X., Feng, Z., Zhang, C., & Wang, W. (2022). Biomimetic glycopeptide hydrogel coated pcl/nha scaffold for enhanced cranial bone regeneration via macrophage m2 polarization-induced osteo-immunomodulation. Biomaterials, 285, 121538. https://doi.org/10.1016/j.biomaterials.2022.121538
- [7] Ding, L., Chang, C.J., Liang, M.L., Dong, K. M., & Li, F.R. (2024). Plant derived extracellular vesicles as potential emerging tools for cancer therapeutics. Advanced therapeutics, 7(11), 2400256.
- [8] Yu, Y., Jin, H., Li, L., Zhang, X., Zheng, C., Gao, X., Sun, B. (2023). An injectable, activated neutrophil-derived exosome mimetics/extracellular matrix hybrid hydrogel with antibacterial activity and wound healing promotion effect for diabetic wound therapy. Journal of nanobiotechnology, 21(1), 308. https://doi.org/10.1186/s12951-023-02073-0
- [9] Seol, Y., Ganguly, K., Kim, H., Randhawa, A., Patil, T. V, Dutta, S. D., & Lim, K.T. (2024). Stimuli-triggered pollen-inspired micro/nanorobots for advanced therapeutics. Nano today, 57, 102337. https://doi.org/10.1016/j.nantod.2024.102337
- [10] Hu, Q., Qian, C., Sun, W., Wang, J., Chen, Z., Bomba, H. N., … & Gu, Z. (2016). Engineered nano-platelets for enhanced treatment of multiple myeloma and thrombus. Advanced materials (deerfield beach, fla.), 28(43), 9573. https://pmc.ncbi.nlm.nih.gov/articles/PMC5283718/
- [11] Li, X., Guan, Q., Zhuang, Z., Zhang, Y., Lin, Y., Wang, J., … & Licheng Ling. (2023). Ordered mesoporous carbon grafted MXene catalytic heterostructure as Li-ion kinetic pump toward high-efficient sulfur/sulfide conversions for Li S battery. ACS nano, 17(2), 1653–1662. https://pubs.acs.org/doi/abs/10.1021/acsnano.2c11663
- [12] Li, L., Zhang, Q., He, B., Pan, R., Wang, Z., Chen, M., … & Litao Sun. (2022). Advanced multifunctional aqueous rechargeable batteries design: from materials and devices to systems. Advanced materials, 34(5), 2104327. https://doi.org/10.1002/adma.202104327
- [13] Zhang, Y., Liu, Q., Zhang, X., Huang, H., Tang, S., Chai, Y., …& Chengbin Yang . (2022). Recent advances in exosome-mediated nucleic acid delivery for cancer therapy. Journal of nanobiotechnology, 20(1), 279. https://doi.org/10.1186/s12951-022-01472-z
- [14] Singh, D., & Ray, S. (2023). A short appraisal of nanodiamonds in drug delivery and targeting: recent advancements. Frontiers in nanotechnology, 5, 1259648. https://doi.org/10.3389/fnano.2023.1259648
- [15] Dong, Y., Zheng, S., Qin, J., Zhao, X., Shi, H., Wang, X., … & Wu, Z. S. (2018). All-MXene-based integrated electrode constructed by Ti3C2 nanoribbon framework host and nanosheet interlayer for high-energy-density Li--S batteries. ACS nano, 12(3), 2381–2388. https://pubs.acs.org/doi/abs/10.1021/acsnano.7b07672
- [16] Zhang, D., Chen, Q., Shi, C., Chen, M., Ma, K., Wan, J., & Liu, R. (2021). Dealing with the foreign-body response to implanted biomaterials: Strategies and applications of new materials. Advanced functional materials, 31(6), 2007226. https://doi.org/10.1002/adfm.202007226
- [17] Wang, X., Wang, X., Yue, Q., Xu, H., Zhong, X., Sun, L., & Cheng, L. (2021). Liquid exfoliation of TiN nanodots as novel sonosensitizers for photothermal-enhanced sonodynamic therapy against cancer. Nano today, 39, 101170. https://doi.org/10.1016/j.nantod.2021.101170
- [18] Li, N., Sun, C., Jiang, J., Wang, A., Wang, C., Shen, Y., … & Yan Wang. (2021). Advances in controlled-release pesticide formulations with improved efficacy and targetability. Journal of agricultural and food chemistry, 69(43), 12579–12597. https://pubs.acs.org/doi/abs/10.1021/acs.jafc.0c05431
- [19] Gupta, A. K., & Gupta, M. (2005). Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials, 26(18), 3995–4021. https://doi.org/10.1016/j.biomaterials.2004.10.012
- [20] Sun, M., Su, X., Ding, B., He, X., Liu, X., Yu, A., & Zhai, G. (2012). Advances in nanotechnology-based delivery systems for curcumin. Nanomedicine, 7(7), 1085–1100. https://doi.org/10.2217/nnm.12.80
- [21] Pu, H. L., Chiang, W. L., Maiti, B., Liao, Z. X., Ho, Y. C., Shim, M. S., & Sung, H.W. (2014). Nanoparticles with dual responses to oxidative stress and reduced ph for drug release and anti-inflammatory applications. ACS nano, 8(2), 1213–1221. https://doi.org/10.1021/nn4058787
- [22] Wang, J., Tang, W., Yang, M., Yin, Y., Li, H., Hu, F., & Wang, Y. (2021). Inflammatory tumor microenvironment responsive neutrophil exosomes-based drug delivery system for targeted glioma therapy. Biomaterials, 273, 120784. https://doi.org/10.1016/j.biomaterials.2021.120784
- [23] Lee, S. W. L., Paoletti, C., Campisi, M., Osaki, T., Adriani, G., Kamm, R. D., … & Chiono, V. (2019). MicroRNA delivery through nanoparticles. Journal of controlled release, 313, 80–95. https://doi.org/10.1016/j.jconrel.2019.10.007
- [24] Cheng, Y., Xu, Q., Yu, M., Dang, C., Deng, L., & Chen, H. (2025). Curcumin nanoparticles-related non-invasive tumor therapy, and cardiotoxicity relieve. Current medicinal chemistry, 32(3), 447–467. https://doi.org/10.2174/0109298673305616240610153554
- [25] Deng, Y., Zhang, X., Shen, H., He, Q., Wu, Z., Liao, W., & Yuan, M. (2020). Application of the nano-drug delivery system in treatment of cardiovascular diseases. Frontiers in bioengineering and biotechnology, 7, 489. https://doi.org/10.3389/fbioe.2019.00489
- [26] Mandal, A. K., & Chakraborty, S. K. (2025). Biogenesis and implication of miRNAs in the development of diseases and their theranostic inhibitions. Journal of drug delivery & therapeutics, 15(8). https://doi.org/10.22270/jddt.v15i8.7336
- [27] Swierczewska, M., Han, H. S., Kim, K., Park, J. H., & Lee, S. (2016). Polysaccharide-based nanoparticles for theranostic nanomedicine. Advanced drug delivery reviews, 99(Pt A), 70–84. https://doi.org/10.1016/j.addr.2015.11.015
- [28] Liu, Y., Li, C., Yang, X., Yang, B., & Fu, Q. (2024). Stimuli-responsive polymer-based nanosystems for cardiovascular disease theranostics. Biomaterials science, 12(15), 3805–3825. https://doi.org/10.1039/D4BM00415A
- [29] Sun, X., Shi, J., Fu, X., Yang, Y., & Zhang, H. (2018). Long-term in vivo biodistribution and toxicity study of functionalized near-infrared persistent luminescence nanoparticles. Scientific reports, 8(1), 10595. https://doi.org/10.1038/s41598-018-29019-z
- [30] Bi, J., Mo, C., Li, S., Huang, M., Lin, Y., Yuan, P., & Xu, S. (2023). Immunotoxicity of metal and metal oxide nanoparticles: From toxic mechanisms to metabolism and outcomes. Biomaterials science, 11(12), 4151–4183. https://doi.org/10.1039/d3bm00271c
- [31] Pan, L., Zhang, X., Yang, B., He, Z., Sun, M., Sun, J., & Wang, W. (2025). Invasive pulmonary fungal diseases: towards formulation-optimized targeted therapeutic strategies. https://doi.org/10.26599/NR.2025.94908114
- [32] Yan, S., Na, J., Liu, X., & Wu, P. (2024). Different targeting ligands-mediated drug delivery systems for tumor therapy. Pharmaceutics, 16(2). https://doi.org/10.3390/pharmaceutics16020248
- [33] Das, A., Pathak, K., Saikia, R., Pathak, M. P., Gogoi, U., Das, D., …& Sonowal, S. (2023). Future perspectives and challenges: Clinical translation and regulatory aspects, scale-up and manufacturing, ethical considerations, Nanocarriers for nucleic acids and proteins. CRC press. https://doi.org/10.2174/1573406419666221226093311
- [34] Arnold, K. E., Brown, A. R., Ankley, G. T., & Sumpter, J. P. (2014). Medicating the environment: Assessing risks of pharmaceuticals to wildlife and ecosystems. Philosophical transactions of the royal society b: Biological sciences, 369(1656), 1-11. https://doi.org/10.1098/rstb.2013.0569
- [35] Rajput, D., Dwivedi, A., Derashri, A., Bhandari, D. D., & Kolhe, N. (2024). Assessment of nanoparticle induced cytotoxicity and safety profile. Nanoparticles in cancer therapy. CRC press. https://doi.org/10.1201/9781003515630-18
- [36] Wasti, S., Lee, I. H., Kim, S., Lee, J. H., & Kim, H. (2023). Ethical and legal challenges in nanomedical innovations: A scoping review. Frontiers in genetics, 14, 1163392. https://doi.org/10.3389/fgene.2023.1163392
- [37] Zhang, P., Li, Y., Tang, W., Zhao, J., Jing, L., & Mchugh, K. J. (2022). Theranostic nanoparticles with disease-specific administration strategies. Nano today, 42, 101335. https://doi.org/10.1016/j.nantod.2021.101335
- [38] Alhazmi, H. A., Ahsan, W., Mangla, B., Javed, S., Hassan, M. Z., Asmari, M., & Najmi, A. (2022). Graphene-based biosensors for disease theranostics: Development, applications, and recent advancements. Nanotechnology reviews, 11(1), 96–116. https://doi.org/10.1515/ntrev-2022-0009
- [39] Li, X., Xie, X., Wu, Y., Zhang, Z., & Liao, J. (2023). Microneedles: Structure, classification, and application in oral cancer theranostics. Drug delivery and translational research, 13(9), 2195–2212. https://doi.org/10.1007/s13346-023-01311-0
- [40] Yang, F., Xue, J., Wang, G., & Diao, Q. (2022). Nanoparticle-based drug delivery systems for the treatment of cardiovascular diseases. Frontiers in pharmacology, 13, 999404. https://doi.org/10.3389/fphar.2022.999404
- [41] Rajpoot, K. (2025). Role of artificial intelligence in nanomedicine and organ-specific therapy: an updated review. Current drug targets, 26, (3), 921 - 953.https://doi.org/10.2174/0113894501394785250715165404
- [42] Khan, A., Barapatre, A. R., Babar, N., Doshi, J., Ghaly, M., Patel, K. G., … & Jamil, U. (2025). Genomic medicine and personalized treatment: A narrative review. Annals of medicine and surgery (2012), 87(3), 1406–1414. https://doi.org/10.1097/MS9.0000000000002965
- [43] Zamay, G. S., Zamay, T. N., Lukyanenko, K. A., & Kichkailo, A. S. (2020). Aptamers increase biocompatibility and reduce the toxicity of magnetic nanoparticles used in biomedicine. Biomedicines, 8(3). https://doi.org/10.3390/biomedicines8030059
- [44] Buchete, N. V., Cicha, I., Dutta, S., & Neofytou, P. (2024). Multiscale physics-based in silico modelling of nanocarrier-assisted intravascular drug delivery. Frontiers in drug delivery, 4, 1362660. https://doi.org/10.3389/fddev.2024.1362660
- [45] Smith, B. R., & Edelman, E. R. (2023). Nanomedicines for cardiovascular disease. Nature cardiovascular research, 2(4), 351–367. https://www.nature.com/articles/s44161-023-00232-y
- [46] Młynarska, E., Bojdo, K., Frankenstein, H., Kustosik, N., Mstowska, W., Przybylak, A., & Franczyk, B. (2025). Nanotechnology and artificial intelligence in dyslipidemia management—cardiovascular disease: Advances challenges and future perspectives. Journal of clinical medicine, 14(3), 887. https://doi.org/10.3390/jcm14030887
- [47] Panchpuri, M., Painuli, R., & Kumar, C. (2025). Artificial intelligence in smart drug delivery systems: A step toward personalized medicine. RSC pharmaceutics, 2025(2), 882-914. https://doi.org/10.1039/d5pm00089k
- [48] Badarinadh, K. S., Shukla, P., Chauhan, S. B., & Singh, I. (2024). A comprehensive exploration of nanomedicine’s current landscape and future horizons. In Lipid based nanocarriers for drug delivery, (391-433). Nova Science Publishers, Inc. https://B2n.ir/yu2175
- [49] Mangla, B., Kumar, P., Javed, S., Pathan, T., Ahsan, W., & Aggarwal, G. (2025). Regulating nanomedicines: challenges, opportunities, and the path forward. Nanomedicine, 20(15), 1911–1927. https://doi.org/10.1080/17435889.2025.2533107
- [50] Rodriguez Gómez, F. D., Monferrer, D., Penon, O., & Rivera Gil, P. (2025). Regulatory pathways and guidelines for nanotechnology-enabled health products: A comparative review of EU and US frameworks. Frontiers in medicine, 12, 1544393. https://doi.org/10.3389/fmed.2025.1544393
- [51] El-Shafey, S. E., Obada, M. K., El-Shamy, A. M., & Mohamed, W. S. (2024). Silica/klucel nanocomposite as promising durable adsorbent for lead removal from industrial effluents. Scientific reports, 14(1), 26095. https://www.nature.com/articles/s41598-024-74680-2
- [52] Zeng, H., Lv, Z., Sun, X., Tong, Y., Wu, W., Dong, S., & Mao, L. (2024). Predicting bioaccumulation of nanomaterials: Modeling approaches with challenges. Environment health (Washington, D.C.), 2(4), 189–201. https://doi.org/10.1021/envhealth.3c00138
- [53] Tawiah, B., Ofori, E. A., & George, S. C. (2024). Nanotechnology in societal development. In Nanotechnology in societal development (pp. 1–64). Springer. https://doi.org/10.1007/978-981-97-6184-5_1
- [54] Joseph, J. S. (2025). Balancing innovation and biomedical ethics within national institutes of health: Integrative and regulatory reforms for artificial intelligence-driven biotechnology. Biotechnology law report, 44(2), 93–116. https://doi.org/10.1089/blr.2025.360002.jj