Recent Advances in Nanoparticle-Based Targeted Drug Delivery Systems: A Comprehensive Review

Authors

  • Omar Mar Cornelio * Center for Computational Mathematics Studies, University of Computer Science, 19370 Havana, Cuba. https://orcid.org/0000-0002-0689-6341
  • Fatemeh Rezaie Teimurbaglou Department of Chemistry, Islamic Azad University, Tonekabon Branch, Tonekabon, Iran.

https://doi.org/10.48314/nna.vi.60

Abstract

Nanomedicine has transformed the landscape of therapeutic interventions, with nanoparticle-based targeted drug delivery systems representing one of its most promising advances. Conventional chemotherapy often suffers from poor specificity, leading to severe systemic toxicity and limited efficacy. This comprehensive review synthesizes recent progress in the design and application of engineered nanoparticles that address these limitations through enhanced targeting, improved bioavailability, and controlled drug release. Major classes of nanocarriers including lipid-based nanoparticles (LNPs and liposomes), polymeric and inorganic nanoparticles (such as gold NPs), dendrimers, and exosomes are systematically categorized and discussed with emphasis on their physicochemical characteristics and biomedical applications. The review further highlights key targeting strategies, including passive targeting via the enhanced permeability and retention (EPR) effect and active targeting through surface-functionalized ligands such as antibodies, peptides, and aptamers. Special attention is given to stimuli-responsive or “smart” nanocarriers that enable drug release in response to internal (pH, enzymes, redox) or external (light, magnetic field) cues. Advances in multifunctional platforms, combination therapies, and artificial intelligence–assisted nanocarrier design are also discussed, alongside ongoing challenges such as crossing biological barriers, particularly the blood brain barrier. Finally, the review outlines the translational landscape, regulatory considerations, and future perspectives of nanoparticle-based drug delivery systems, offering insights into the path from bench to bedside.

Keywords:

Targeted drug delivery, Nanoparticles, Nanomedicine, Cancer therapy

References

  1. [1] Tenchov, R., Bird, R., Curtze, A. E., & Zhou, Q. (2021). Lipid nanoparticles─ from liposomes to mRNA vaccine delivery, a landscape of research diversity and advancement. ACS nano, 15(11), 16982–17015. https://doi.org/10.1021/acsnano.1c04996

  2. [2] Liu, P., Chen, G., & Zhang, J. (2022). A review of liposomes as a drug delivery system: Current status of approved products, regulatory environments, and future perspectives. Molecules, 27(4), 1372. https://doi.org/10.3390/molecules27041372

  3. [3] Su, S., & M Kang, P. (2020). Recent advances in nanocarrier-assisted. Pharmaceutics, 12(9), 837. https://doi.org/10.3390/pharmaceutics12090837

  4. [4] Pandey, S., Shaikh, F., Gupta, A., Tripathi, P., & Yadav, J. S. (2021). A recent update: Solid lipid nanoparticles for effective drug delivery. Advanced pharmaceutical bulletin, 12(1), 17. https://doi.org/10.34172/apb.2022.007

  5. [5] Subroto, E., Andoyo, R., & Indiarto, R. (2023). Solid lipid nanoparticles: Review of the current research on encapsulation and delivery systems for active and antioxidant compounds. Antioxidants, 12(3), 633. https://doi.org/10.3390/antiox12030633

  6. [6] Naskar, A., Kilari, S., Baranwal, G., Kane, J., & Misra, S. (2024). Nanoparticle-based drug delivery for vascular applications. Bioengineering, 11(12), 1222. https://doi.org/10.3390/bioengineering11121222

  7. [7] Yao, Y., Zhou, Y., Liu, L., Xu, Y., Chen, Q., Wang, Y., Shao, A. (2020). Nanoparticle-based drug delivery in cancer therapy and its role in overcoming drug resistance. Frontiers in molecular biosciences, 7, 193. https://doi.org/10.3389/fmolb.2020.00193

  8. [8] Yusuf, A., Almotairy, A. R. Z., Henidi, H., Alshehri, O. Y., & Aldughaim, M. S. (2023). Nanoparticles as drug delivery systems: A review of the implication of nanoparticles’ physicochemical properties on responses in biological systems. Polymers, 15(7), 1596. https://doi.org/10.3390/polym15071596

  9. [9] Xu, Z., Xie, Y., Chen, W., & Deng, W. (2025). Nanocarrier-based systems for targeted delivery: Current challenges and future directions. MedComm, 6(9), e70337. https://doi.org/10.1002/mco2.70337

  10. [10] Shan, X., Gong, X., Li, J., Wen, J., Li, Y., & Zhang, Z. (2022). Current approaches of nanomedicines in the market and various stage of clinical translation. Acta pharmaceutica sinica b, 12(7), 3028–3048. https://doi.org/10.1016/j.apsb.2022.02.025

  11. [11] Mignani, S., Rodrigues, J., Roy, R., Shi, X., Ceña, V., El Kazzouli, S., & Majoral, J. P. (2019). Exploration of biomedical dendrimer space based on in-vivo physicochemical parameters: Key factor analysis (Part 2). Drug discovery today, 24(5), 1184–1192. https://doi.org/10.1016/j.drudis.2019.03.001

  12. [12] Zenze, M., Daniels, A., & Singh, M. (2023). Dendrimers as modifiers of inorganic nanoparticles for therapeutic delivery in cancer. Pharmaceutics, 15(2), 398. https://doi.org/10.3390/pharmaceutics15020398

  13. [13] Wang, J., Li, B., Qiu, L., Qiao, X., & Yang, H. (2022). Dendrimer-based drug delivery systems: History, challenges, and latest developments. Journal of biological engineering, 16(1), 18. https://doi.org/10.1186/s13036-022-00298-5%0A%0A

  14. [14] Dykman, L., Khlebtsov, B., & Khlebtsov, N. (2025). Drug delivery using gold nanoparticles. Advanced drug delivery reviews, 216, 115481. https://doi.org/10.1016/j.addr.2024.115481

  15. [15] Boppana, S. H., Kutikuppala, L. V. S., Sharma, S., C, M., Rangari, G., Misra, A. K., others. (2024). Current approaches in smart nano-inspired drug delivery: A narrative review. Health science reports, 7(4), e2065. https://doi.org/10.1002/hsr2.2065

  16. [16] Mitchell, M. J., Billingsley, M. M., Haley, R. M., Wechsler, M. E., Peppas, N. A., & Langer, R. (2021). Engineering precision nanoparticles for drug delivery. Nature reviews drug discovery, 20(2), 101–124. https://doi.org/10.1038/s41573-020-0090-8%0A%0A

  17. [17] Koh, H. B., Kim, H. J., Kang, S. W., & Yoo, T. H. (2023). Exosome-based drug delivery: Translation from bench to clinic. Pharmaceutics, 15(8), 2042. https://doi.org/10.3390/pharmaceutics15082042

  18. [18] Sharma, V., & Mukhopadhyay, C. Das. (2024). Exosome as drug delivery system: Current advancements. Extracellular vesicle, 3, 100032. https://doi.org/10.1016/j.vesic.2023.100032

  19. [19] Qiu, S., Zhu, F., & Tong, L. (2024). Application of targeted drug delivery by cell membrane-based biomimetic nanoparticles for inflammatory diseases and cancers. European journal of medical research, 29(1), 523. https://doi.org/10.1186/s40001-024-02124-8%0A%0A

  20. [20] Li, X., Peng, X., Zoulikha, M., Boafo, G. F., Magar, K. T., Ju, Y., & He, W. (2024). Multifunctional nanoparticle-mediated combining therapy for human diseases. Signal transduction and targeted therapy, 9(1), 1. https://doi.org/10.1038/s41392-023-01668-1%0A%0A

  21. [21] Lee, H. J., Kook, S., Kim, K., Ryu, J., Lee, H., Lee, Y., & Won, D. (2025). Lightweight and efficient authentication and key distribution scheme for cloud-assisted IoT for telemedicine. Sensors, 25(9), 2894. https://doi.org/10.3390/s25092894

  22. [22] Lee, N. K., Kim, S.N., & Park, C. G. (2021). Immune cell targeting nanoparticles: A review. Biomaterials research, 25(1), 44. https://doi.org/10.1186/s40824-021-00246-2

  23. [23] Cosma, M., Mocan, T., Delcea, C., Pop, T., Mosteanu, O., & Mocan, L. (2025). Gold nanoparticles as targeted drug delivery systems for liver cancer: A systematic review of tumor targeting efficiency and toxicity profiles. International journal of molecular sciences, 26(16), 7917. https://doi.org/10.3390/ijms26167917

  24. [24] Chang, D., Ma, Y., Xu, X., Xie, J., & Ju, S. (2021). Stimuli-responsive polymeric nanoplatforms for cancer therapy. Frontiers in bioengineering and biotechnology, 9, 707319. https://doi.org/10.3389/fbioe.2021.707319

  25. [25] Farjadian, F., Ghasemi, S., Akbarian, M., Hoseini Ghahfarokhi, M., Moghoofei, M., & Doroudian, M. (2022). Physically stimulus-responsive nanoparticles for therapy and diagnosis. Frontiers in chemistry, 10, 952675. https://doi.org/10.3389/fchem.2022.952675

  26. [26] Das, K. P. (2023). Nanoparticles and convergence of artificial intelligence for targeted drug delivery for cancer therapy: Current progress and challenges. Frontiers in medical technology, 4, 1067144. https://doi.org/10.3389/fmedt.2022.1067144

  27. [27] Gholami, A., Mohkam, M., Soleimanian, S., Sadraeian, M., & Lauto, A. (2024). Bacterial nanotechnology as a paradigm in targeted cancer therapeutic delivery and immunotherapy. Microsystems & nanoengineering, 10(1), 113. https://doi.org/10.1038/s41378-024-00743-z%0A%0A

  28. [28] Wu, D., Chen, Q., Chen, X., Han, F., Chen, Z., & Wang, Y. (2023). The blood brain barrier: Structure, regulation and drug delivery. Signal transduction and targeted therapy, 8(1), 217. https://doi.org/10.1038/s41392-023-01481-w%0A%0A

  29. [29] Rahman, M. A., Jalouli, M., Bhajan, S. K., Al-Zharani, M., & Harrath, A. H. (2025). A Comprehensive review of nanoparticle-based drug delivery for modulating PI3K/AKT/mTOR-mediated autophagy in cancer. International journal of molecular sciences, 26(5), 1868. https://doi.org/10.3390/ijms26051868

  30. [30] Li, M., Zhao, G., Su, W. K., & Shuai, Q. (2020). Enzyme-responsive nanoparticles for anti-tumor drug delivery. Frontiers in chemistry, 8, 647. https://doi.org/10.3389/fchem.2020.00647

  31. [31] Younis, M. A., Tawfeek, H. M., Abdellatif, A. A. H., Abdel Aleem, J. A., & Harashima, H. (2022). Clinical translation of nanomedicines: Challenges, opportunities, and keys. Advanced drug delivery reviews, 181, 114083. https://doi.org/10.1016/j.addr.2021.114083

Published

2025-03-12

How to Cite

Mar Cornelio, O. . ., & Rezaie Teimurbaglou, F. . . (2025). Recent Advances in Nanoparticle-Based Targeted Drug Delivery Systems: A Comprehensive Review. Nano Nexus & Applications, 1(1), 12-23. https://doi.org/10.48314/nna.vi.60